
Tiger Language Reference Manual

Prof. Stephen A. Edwards
Columbia University

This document describes the Tiger language defined in Andrew
Appel’s bookModern Compiler Implementation in Java(Cam-
bridge University Press, 1998).

The Tiger language is a small, imperative language with in-
teger and string variables, arrays, records, and nested functions.
Its syntax resembles some functional languages.

1 Lexical Aspects

An identifieris a sequence of letters, digits, and underscores that
starts with a letter. Case is significant.

Whitespace (spaces, tabs, newlines, returns, and formfeeds)
or comments may appear between tokens and is ignored. Acom-
mentbegins with/* and ends with*/. Comments may nest.

An integer constant is a sequence of one or more decimal dig-
its (i.e., 0123456789). There are no negative integer constants;
negative numbers may be obtained by negating an integer con-
stant using the unary- operator.

A string constant is a sequence of zero or more printable char-
acters, spaces, or escape sequences surrounded by double quotes
". Each escape sequence starts with a backslash\ and stands
for some sequence of characters. The escape sequences are
\n Newline
\t Tab
\" Double quote
\\ Backslash
\^c Control-c, wherec is one of@A...Z[\]^_.
\ddd The character with ASCII codeddd (three deci-

mal digits)
\· · ·\ Any sequence of whitespace characters (spaces,

tabs, newlines, returns, and formfeeds) sur-
rounded by\s is ignored. This allows string con-
stants to span multiple lines by ending and start-
ing each with a backslash.

The reserved words arearray break do else end for
function if in let nil of then to type var while.

The punctuation symbols are, : ; () [] { } . + -
* / = <> < <= > >= & | :=

2 Expressions

A Tiger program is a singleexpr.
expr:

string-constant
integer-constant
nil
lvalue
- expr
expr binary-operator expr

lvalue:= expr
id (expr-listopt)
(expr-seqopt)
type-id{ field-listopt }
type-id[expr] of expr
if exprthen expr
if exprthen exprelse expr
while exprdo expr
for id := exprto exprdo expr
break
let declaration-listin expr-seqopt end

expr-seq:
expr
expr-seq; expr

expr-list:
expr
expr-list, expr

field-list:
id = expr
field-list, id = expr

2.1 Lvalues

lvalue:
id
lvalue. id
lvalue[expr]

An l-value represents a storage location that can be assigned
a value: variables, parameters, fields of records, and elements
of arrays. The elements of an array of sizen are indexed by
0,1, . . . ,n−1.

2.2 Return values

Procedure calls, assignments, if-then, while, break, and some-
times if-then-else produce no value and may not appear where a
value is expected (e.g.,(a:=b)+c is illegal). A let expression
with nothing between thein andend returns no value.

A sequence of zero or more expressions in parenthesis (e.g.,
(a:=3; b:=a) separated by semicolons are evaluated in order
and returns the value produced by the final expression, if any.
An empty pair of parenthesis() is legal and returns no value.

2.3 Record and Array Literals

The expressiontype-id{ field-listopt } (zero or more fields are
allowed) creates a new record instance of typetype-id. Field

1

names, expression types, and the order thereof must exactly
match those of the given record type.

The expressiontype-id[expr] of expr creates a new array
of type type-idwhose size is given by the expression in brack-
ets. Initially, the array is filled with elements whose values are
given by the expression after theof. These two expressions are
evaluated in the order they appear.

2.4 Function Calls

A function application is an expressionid (expr-listopt) with
zero or more comma-separated expression parameters. When a
function is called, the values of these actual parameters are eval-
uated from left to right and bound to the function’s formal pa-
rameters using conventional static scoping rules.

2.5 Operators

The binary operators are+ - * / = <> < > <= >= & |
Parentheses group expressions in the usual way.
A leading minus sign negates an integer expression.
The binary operators+, -, *, and/ require integer operands

and return an integer result.
The binary operators>, <, >=, and<= compare their operands,

which may be either both integer or both string and produce
the integer 1 if the comparison holds and 0 otherwise. String
comparison is done using normal ASCII lexicographic order.

The binary operators= and<> can compare any two operands
of the same (non-valueless) type and return either integer 0 or 1.
Integers are the same if they have the same value. Strings are the
same if they contain the same characters. Two objects of record
type are the same if they refer to the same record. Two arrays
are the same if they refer to the same array. That is, records and
arrays are compared using “reference” or “pointer” equality, not
componentwise.

The logical operators& and| are lazy logical operators on
integers. They do not evaluate their right argument if evaluating
the left determines the result. Zero is considered false; every-
thing else is considered true.

Unary minus has the highest precedence followed by* and/,
then+ and-, then=, <>, >, <, >=, and<=, then&, then|, then
finally :=.

The +, -, *, and/ operators are left associative. The com-
parison operators do not associate, e.g.,a=b=c is erroneous, but
a=(b=c) is legal.

2.6 Assignment

The assignment expressionlvalue := expr evaluates the ex-
pression then binds its value to the contents of thelvalue. As-
signment expressions do not produce values, so something like
a := b := 1 is illegal.

Array and record assignment is by reference, not value. As-
signing an array or record to a variable creates an alias, meaning
later updates of the variable or the value will be reflected in both
places. Passing an array or record as an actual argument to a
function behaves similarly.

A record or array value persists from the time it is created to
the termination of the program, even after control has left the
scope of its definition.

2.7 nil

The expressionnil represents a value that can be assigned to
any record type. Accessing a field from a nil-valued record is
a runtime error.Nil must be used in a context were its actual
record type can be determined, thus the following are legal.

var a : rec := nil a := nil
if a <> nil then ... if a = nil then ...
function f(p: rec) = f(nil)

But these are illegal.

var a := nil if nil = nil then ...

2.8 Flow control

The if-then-else expression, writtenif expr then expr else
exprevaluates the first expression, which must return an integer.
If the result is non-zero, the second expression is evaluated and
becomes the result, otherwise the third expression is evaluated
and becomes the result. Thus, the second and third expressions
must be of the same type or both not return a value.

The if-then expression,if expr then expr evaluates its first
expression, which must be an integer. If the result is non-zero, it
evaluates the second expression, which must not return a value.
The if-then expression does not return a value.

The while-do expression,while expr do expr evaluates its
first expression, which must return an integer. If it is non-zero,
the second expression is evaluated, which must not return a
value, and the while-do expression is evaluated again.

The for expression,for id := expr to expr do expr, eval-
uates the first and second expressions, which are loop bounds.
Then, for each integer value between the values of these two ex-
pressions (inclusive), the third expression is evaluated with the
integer variable named byid bound to the loop index. The scope
of this variable is limited to the third expression, and may not be
assigned to. This expression may not produce a result and is not
executed if the loop’s upper bound is less than the lower bound.

The break expression terminates the innermost enclosing
while or for expression that is enclosed in the same func-
tion/procedure. The break is illegal outside this.

2.9 Let

The expressionlet declaration-listin expr-seqopt end evalu-
ates the declarations, binding types, variables, and functions to
the scope of the expression sequence, which is a sequence of
zero or more semicolon-separated expressions. The result is that
of the last expression, or nothing if there are none.

3 Declarations

declaration-list:
declaration
declaration-list declaration

declaration:
type-declaration
variable-declaration
function-declaration

2

3.1 Types

type-declaration:
type type-id= type

type:
type-id
{ type-fieldsopt }
array of type-id

type-fields:
type-field
type-fields, type-field

type-field:
id : type-id

Tiger has two predefined types:int andstring. New types
may be defined and existing types redefined as follows.

The three forms oftyperefer to a type (creates an alias in a
declaration), a record with named, typed fields (like a C struct,
different records may reuse field names), and an array.

Type expressions (e.g.,{x:int}, array of ty) create dis-
tinct types, so two array types with the same base or two records
with identical fields are different.Type a=b is an alias.

A sequence of type declarations (i.e., with no intervening
variable or function declarations) may be mutually recursive. No
two defined types in such a sequence may have the same name.
Each recursion cycle must pass through a record or array type.

In let . . . type-declaration. . . in expr-seqopt end, the scope
of the type declaration begins at the start of the sequence of type
declarations to which it belongs (which may be a singleton) and
ends at theend.

Type names have their own name space.

3.2 Variables

variable-declaration:
var id := expr
var id : type-id:= expr

This declares a new variable and its initial value. If the type is
not specified, the variable’s type comes from the expression.

In let . . . variable-declaration. . . in expr-seqopt end, the
scope of the variable declaration begins just after the declaration
and ends at theend. A variable lasts throughout its scope.

Variables and functions share the same name space.

3.3 Functions

function-declaration:
function id (type-fieldsopt) = expr
function id (type-fieldsopt) : type-id= expr

The first form is a procedure declaration; the second is a func-
tion. Functions return a value of the specified type; procedures
are only called for their side-effects. Both forms allow the spec-
ification of a list of zero or more typed arguments, which are
passed by value. The scope of these arguments is theexpr.

Theexpr is the body of the function or procedure.
A sequence of function declarations (i.e., with no intervening

variable or type declarations) may be mutually recursive. No two
functions in such a sequence may have the same name.

In let . . . function-declaration. . . in expr-seqopt end, the
scope of the function declaration begins at the start of the se-
quence of function declarations to which it belongs (which may
be a singleton) and ends at theend.

4 Standard Library

function print(s : string)
Print the string on the standard output.

function printi(i : int)
Print the integer on the standard output.

function flush()
Flush the standard output buffer.

function getchar() : string
Read and return a character from standard input; return an
empty string at end-of-file.

function ord(s : string) : int
Return the ASCII value of the first character of s, or−1 if s
is empty.

function chr(i : int) : string
Return a single-character string for ASCII value i. Terminate
program if i is out of range.

function size(s : string) : int
Return the number of characters in s.

function substring(s:string,f:int,n:int):string
Return the substring of s starting at the character f (first char-
acter is numbered zero) and going for n characters.

function concat (s1:string, s2:string):string
Return a new string consisting of s1 followed by s2.

function not(i : int) : int
Return 1 if i is zero, 0 otherwise.

function exit(i : int)
Terminate execution of the program with code i.

5 Example
let /* The eight queens solver from Appel */

var N := 8
type intArray = array of int
var row := intArray [N] of 0
var col := intArray [N] of 0
var diag1 := intArray [N+N-1] of 0
var diag2 := intArray [N+N-1] of 0

function printboard() =
(for i := 0 to N-1
do (for j := 0 to N-1

do print(if col[i]=j then " O" else " .");
print("\n"));

print("\n"))

function try(c:int) =
if c=N then printboard()
else for r := 0 to N-1

do if row[r]=0 &
diag1[r+c]=0 & diag2[r+7-c]=0

then (row[r] := 1; diag1[r+c] := 1;
diag2[r+7-c] := 1; col[c] := r;
try(c+1);
row[r] := 0; diag1[r+c] := 0;
diag2[r+7-c] := 0)

in try(0) end

3

